2024³â 11¿ù 03ÀÏ ÀÏ¿äÀÏ
 
 
  ÇöÀçÀ§Ä¡ > ´º½ºÁö´åÄÄ > Science & Technology

·£¼¶¿þ¾îºÎÅÍ µÅÁöµµ»ì±îÁö... ³ë·ÃÇØÁø »ç±âÇà°¢

 

Á¤Ä¡

 

°æÁ¦

 

»çȸ

 

»ýÈ°

 

¹®È­

 

±¹Á¦

 

°úÇбâ¼ú

 

¿¬¿¹

 

½ºÆ÷Ã÷

 

ÀÚµ¿Â÷

 

ºÎµ¿»ê

 

°æ¿µ

 

¿µ¾÷

 

¹Ìµð¾î

 

½Å»óÇ°

 

±³À°

 

ÇÐȸ

 

½Å°£

 

°øÁö»çÇ×

 

Ä®·³

 

Ä·ÆäÀÎ
Çѻ츲 ¡®¿ì¸®´Â ÇѽҸ²¡¯ ½Ò ¼Òºñ Ä·ÆäÀÎ ½Ã...
1000¸¸¿øÂ¥¸® Àΰø¿Í¿ì, °Ç°­º¸Çè Áö¿ø ¡®Æò...
- - - - - - -
 

NTT Achieves World¡¯s Fastest Zero-bias Operation of a Graphene Photodetector

New Research Demonstrates the Promise of Graphene as a Broadband High-Speed Photodetector Material
´º½ºÀÏÀÚ: 2022-09-27

TOKYO-- September 27, 2022 -- NTT Corporation (“NTT”) and the National Institute for Materials Science (NIMS) have jointly achieved the world‘s fastest zero-bias operation[1] (220 GHz) of a graphene photodetector (PD) [2]. Furthermore, the research conducted by NTT and NIMS clarified the optical-to-electrical (O-E) conversion process in graphene for the first time. Graphene has high sensitivity and high-speed electrical response to a wide range of electromagnetic waves, from terahertz (THz) to ultraviolet (UV). Thus, it is a promising photodetection material for enabling high-speed O-E conversion at wavelength ranges where existing semiconductor devices cannot operate. However, until now, the demonstrated zero-bias operating speed has been limited to 70 GHz due to conventional device structure and measurement equipment. For this reason, the challenge for graphene PDs is to demonstrate 200-GHz operation speeds and clarify graphene’s inherent properties, such the process of optical-to-electrical conversion.

In this study, NTT and NIMS demonstrated high-speed operation with a 3dB bandwidth of 220 GHz by removing the current delay caused by the device structure by using zinc oxide (ZnO) thin film as the gate material and by using on-chip THz spectroscopy technology to read out the current at high speed. The research also found a trade-off between operating speed and sensitivity by comparing the characteristics of PDs fabricated with graphene of different qualities. The findings will enable graphene PDs to be optimized according to their intended use, such as in optical sensors prioritizing sensitivity or O-E signal converters prioritizing speed. This groundbreaking research was published online in the British scientific journal Nature Photonics on August 25th, 2022.

The research group studied O-E conversion in graphene, focusing on the photothermoelectric (PTE) effect[3], which enables zero-bias operation required to improve power consumption and the signal-to-noise ratio. Furthermore, the research showed that, contrary to conventional understanding, the response time of the current is almost independent of the size of the PD. Moreover, the time from light irradiation to current generation can be varied significantly from less than 100 fs to more than 4 ps, depending on the carrier density.

These results demonstrate the potential of graphene as a high-speed broadband PD. However, the graphene in this experiment was exfoliated from graphite, making it unsuitable for mass production. In the future, NTT researchers will evaluate PDs using large-area graphene that can be mass-produced. Researchers have actively been creating materials that do not exist in nature by layering graphene and other two-dimensional materials (single or multi-layered atomic layer materials). Researchers will also search for materials that can achieve even faster operation by making the most of this technology.

[1] In graphene especially, zero-bias operation is essential to improve power consumption and signal-to-noise ratio.
[2] A device that electrically detects light by converting optical signals into electrical signals.
[3] Changing the temperature by irradiating the material with light to generate voltage.



 Àüü´º½º¸ñ·ÏÀ¸·Î

CORRECTING and REPLACING Kioxia Demonstrates Flexible Data Placement-Enabled SSD Running RocksDB at 2024 OCP Global Summit
Celonis AgentC: Making AI Agents Work for the Enterprise with Process Intelligence
P3 Group and FPT Establish Joint Venture P3 Vietnam Ltd. - A Powerful Partnership for Strategic Large-Scale Projects
Celonis Business Collaboration Networks Drive Process Improvement Across Company Boundaries
L&T Technology Services Unveils Cutting-Edge AI Experience Zone Built on NVIDIA AI
ADx NeuroSciences and Alamar Biosciences Announce Partnership to Provide Customized Blood-Based Biomarker Assay Solutions
FPT Software Recognized as a Major Player in the IDC MarketScape

 

ANANDA Scientific and the David Geffen School of Medicine, UCLA, Annou...
AMD-Roborobo to operate a joint booth at the Edutech Asia 2024 exhibit...
Medidata Announces Rave Lite to Support Growth in Early and Late-Stage...
Asia Pacific IT, Business Services Market Continues to Grow, But Slows...
ASDS 2024: New Phase III READY-4 Data Demonstrate Long-Term Safety and...
LambdaTest Introduces Automated Accessibility Testing with Playwright ...
Bentley Systems Announces Generative AI Game-Changer for Civil Site De...

 


°øÁö»çÇ×
´º½ºÁö ÇÑÀÚÇ¥±â 'ãæÚ¤ó¢'
´º½º±×·ì Á¤º¸ ¹Ìµð¾î ºÎ¹® »óÇ¥µî·Ï
¾ËÇÁ·Ò °è¿­ »óÇ¥, »óÇ¥µî·Ï ¿Ï·á
¾Ë¶ã°Ç¼³, »óÇ¥µî·Ï ¿Ï·á
Á¸Â÷´åÄÄ, ±Û²Ã º¯°æ »óÇ¥µî·Ï ¿Ï·á

 

ȸ»ç¼Ò°³ | ÀÎÀçä¿ë | ÀÌ¿ë¾à°ü | °³ÀÎÁ¤º¸Ãë±Þ¹æħ | û¼Ò³âº¸È£Á¤Ã¥ | Ã¥ÀÓÇÑ°è¿Í ¹ýÀû°íÁö | À̸ÞÀÏÁÖ¼Ò¹«´Ü¼öÁý°ÅºÎ | °í°´¼¾ÅÍ

±â»çÁ¦º¸ À̸ÞÀÏ news@newsji.com, ÀüÈ­ 050 2222 0002, Æѽº 050 2222 0111, ÁÖ¼Ò : ¼­¿ï ±¸·Î±¸ °¡¸¶»ê·Î 27±æ 60 1-37È£

ÀÎÅͳݴº½º¼­ºñ½º»ç¾÷µî·Ï : ¼­¿ï ÀÚ00447, µî·ÏÀÏÀÚ : 2013.12.23., ´º½º¹è¿­ ¹× û¼Ò³âº¸È£ÀÇ Ã¥ÀÓ : ´ëÇ¥ CEO

Copyright ¨Ï All rights reserved..