2025³â 06¿ù 17ÀÏ È­¿äÀÏ
 
 
  ÇöÀçÀ§Ä¡ > ´º½ºÁö´åÄÄ > Science & Technology

·£¼¶¿þ¾îºÎÅÍ µÅÁöµµ»ì±îÁö... ³ë·ÃÇØÁø »ç±âÇà°¢

 

Á¤Ä¡

 

°æÁ¦

 

»çȸ

 

»ýȰ

 

¹®È­

 

±¹Á¦

 

°úÇбâ¼ú

 

¿¬¿¹

 

½ºÆ÷Ã÷

 

ÀÚµ¿Â÷

 

ºÎµ¿»ê

 

°æ¿µ

 

¿µ¾÷

 

¹Ìµð¾î

 

½Å»óǰ

 

±³À°

 

ÇÐȸ

 

½Å°£

 

°øÁö»çÇ×

 

Ä®·³

 

Ä·ÆäÀÎ
Çѻ츲 ¡®¿ì¸®´Â ÇѽҸ²¡¯ ½Ò ¼Òºñ Ä·ÆäÀÎ ½Ã...
1000¸¸¿øÂ¥¸® Àΰø¿Í¿ì, °Ç°­º¸Çè Áö¿ø ¡®Æò...
- - - - - - -
 

IQM Quantum Computers and QphoX Partner to Develop Optical Interface for Scaling Superconducting Quantum Processors

´º½ºÀÏÀÚ: 2022-09-01

DELFT, THE NETHERLANDS-- September 01, 2022 -- Dutch based quantum transduction startup QphoX and Finnish quantum computer manufacturer IQM Quantum Computers have announced a new collaboration to develop a next generation interface for scaling quantum computers.

IQM is the European leader in building quantum computers and provides on-premises quantum computers for supercomputing data centres and research labs and offers full access to its hardware. IQM delivers these machines as a full-stack system integrator with its own quantum processors using superconducting qubits.

QphoX specializes in photon wavelength conversion for quantum technologies and is working to create the world’s first quantum modem which will allow quantum processors to be networked together. This will unlock new applications like distributed quantum computing between remotely entangled quantum processors, solving one of the biggest scaling challenges facing the industry.

The companies will combine their respective expertise in quantum information processing to create a new, scalable interface for communicating with quantum processors via optical interconnects.

Today’s quantum processors will need to substantially grow in size in order to tackle real-world applications. One of the main obstacles is that microwave quantum processors must operate in a demanding cryogenic environment while being controlled via microwave lines and cryogenic amplifiers that generate substantial heat, thus limiting the size of the processor. As manufacturers push towards larger chips it is critical to find scalable approaches that will ultimately allow for computers with hundreds of thousands of qubits.

“By leveraging our unique microwave to optical conversion technology, signals can instead be routed through the cryostat via optical fibers. As a result, both the spatial and heat load constraints placed on the cryostat will be reduced, allowing larger processors to be built in a single cryostat. We are very excited about embarking on this new partnership. Over the past several months we have already been working with IQM’s processors and have been very impressed with the quality and performance” said Frederick Hijazi, COO and Co-Founder, QphoX.

“The future large scale quantum computers require technologies for optical communication or cryogenic signal generation, or both. We found QphoX’s expertise and technology plans as a promising alternative to communicate the control and readout signal of quantum computer to the qubit chip using optical fiber. This collaboration will become an enabler for systems beyond 1000 qubits through simplifying the cabling and new product innovation” said Dr. Juha Vartiainen, COO and Co-founder, IQM Quantum Computers.



 Àüü´º½º¸ñ·ÏÀ¸·Î

New LG Smart Monitor Swing Boosts Productivity with Flexible Stand and Touchscreen
LambdaTest Integrates with Assembla to Streamline Bug Tracking for Development Teams
Nemluvio¢ç (nemolizumab) shows sustained and improved efficacy in reducing itch and skin lesions in atopic dermatitis patients over two years
Vantiva and Hi3G Denmark launch Falcon 5G, a premium Fixed Wireless Access solution, enhancing speed, coverage, and energy-efficient connectivity
Lenovo and Bellevue University Team Up to Offer Supply Chain and Logistics Education to Deliver ¡°Smarter Technology for All¡±
Byondis Doses First Patient in Phase 1 Trial of Novel SIRP¥á-Directed Antibody BYON4228 for Advanced or Metastatic Solid Tumors
GCT Semiconductor and Iridium Sign MOU to Collaborate on Integrating Iridium NTN Direct℠ Service into GCT Chipset

 

Fujirebio Expands Its Neuro Testing Portfolio With the Launch of the F...
Biocytogen Secures Japan Patent for RenMab Platform, Expands Global Pa...
Takeda and Nature Announce Call for Applications Now Open for 2026 Inn...
Protagonist & Takeda Reveal ASCO Plenary Results From VERIFY Phase 3 S...
Seventh and Eighth O3b mPOWER Satellites to Start Delivering Connectiv...
Textron Aviation European Distribution Center Celebrates 10 Years as I...
Kinaxis Brings AI-Powered Supply Chain Breakthroughs to Tokyo at Kinex...

 


°øÁö»çÇ×
´º½ºÁö ÇÑÀÚ Ç¥±â¿¡ ´ë¸¸½Ä À½Â÷ Ç¥±â '纽ÞÙó¢ ´Ï¿ì½ÃÁö' º´±â
º£³×ÇÁ·Ò º£³×ÀÎÅõ Áß¹® Ç¥±â 宝Ò¬ÜØÙÌ 宝Ò¬ì×öõ(ÜÄÒ¬ÜØÙÌ ÜÄ...
¹Ìµð¾î¾Æ¿ì¾î Mediaour ØÚ体ä²们 ØÚô÷ä²Ùú MO ¿¥¿À ØÚä² ØÚä²
¾Ë¸®¿ìºê Alliuv ä¹备: ä¹联êó备, ¾Ë¶ã Althle ä¹÷åìÌ
¾Ë¸®¾Ë Allial Áß¹® Ç¥±â ä¹××尔 ä¹××ì³
´ºÆÛ½ºÆ® New1st Áß¹® Ç¥±â 纽ììãæ(¹øÃ¼ Òïììãæ), N1 纽1
¿£ÄÚ½º¸ð½º : À̾¾ 'EnCosmos : EC' Áß¹® Ç¥±â ì¤ñµ
¾ÆÀ̵ð¾î·Ð Idearon Áß¹® Ç¥±â ì¤îè论 ì¤îèÖå
¹ÙÀÌ¿ÀÀÌ´Ï Bioini Áß¹® Ç¥±â ù±药研 ù±å·æÚ
¿À½ºÇÁ·Ò Ausfrom 奥ÞÙÜØÙÌ, À£ÇÁ·Ò Welfrom 卫ÜØÙÌ
¿¡³ÊÇÁ·Ò Enerfrom 额ÒöÜØÙÌ ¿¡³ÊÀ¯ºñ Eneruv 额Òöêó备
¾ËÇÁ·Ò Alfrom Áß¹® Ç¥±â ä¹尔ÜØÙÌ ä¹ì³ÜØÙÌ

 

ȸ»ç¼Ò°³ | ÀÎÀçä¿ë | ÀÌ¿ë¾à°ü | °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ | û¼Ò³âº¸È£Á¤Ã¥ | Ã¥ÀÓÇѰè¿Í ¹ýÀû°íÁö | À̸ÞÀÏÁÖ¼Ò¹«´Ü¼öÁý°ÅºÎ | °í°´¼¾ÅÍ

±â»çÁ¦º¸ À̸ÞÀÏ news@newsji.com, ÀüÈ­ 050 2222 0002, ÆÑ½º 050 2222 0111, ÁÖ¼Ò : ¼­¿ï ±¸·Î±¸ °¡¸¶»ê·Î 27±æ 60 1-37È£

ÀÎÅͳݴº½º¼­ºñ½º»ç¾÷µî·Ï : ¼­¿ï ÀÚ00447, µî·ÏÀÏÀÚ : 2013.12.23., ´º½º¹è¿­ ¹× û¼Ò³âº¸È£ÀÇ Ã¥ÀÓ : ´ëÇ¥ CEO

Copyright ¨Ï All rights reserved..