2024³â 05¿ù 18ÀÏ Åä¿äÀÏ
 
 
  ÇöÀçÀ§Ä¡ > ´º½ºÁö´åÄÄ > °úÇбâ¼ú

·£¼¶¿þ¾îºÎÅÍ µÅÁöµµ»ì±îÁö... ³ë·ÃÇØÁø »ç±âÇà°¢

 

Á¤Ä¡

 

°æÁ¦

 

»çȸ

 

»ýÈ°

 

¹®È­

 

±¹Á¦

 

°úÇбâ¼ú

 

¿¬¿¹

 

½ºÆ÷Ã÷

 

ÀÚµ¿Â÷

 

ºÎµ¿»ê

 

°æ¿µ

 

¿µ¾÷

 

¹Ìµð¾î

 

½Å»óÇ°

 

±³À°

 

ÇÐȸ

 

½Å°£

 

°øÁö»çÇ×

 

Ä®·³

 

Ä·ÆäÀÎ
1000¸¸¿øÂ¥¸® Àΰø¿Í¿ì, °Ç°­º¸Çè Áö¿ø ¡®Æò...
Ƽ¸Ó´Ïº¹ÁöÀç´Ü ¡®À̷ο·Î Ä·ÆäÀΡ¯
- - - - - - -
 

µ¥ÀÌÅÍ Áõ°­ ½Ã½ºÅÛ ¡®¸®¹ìÆÛ¡¯ °³¹ß

ÀΰøÁö´É ÇнÀ ´õ ºü¸£°í Á¤È®ÇÏ°Ô
´º½ºÀÏÀÚ: 2021-05-16

¼­¿ï´ëÇб³ °ø°ú´ëÇÐ(ÇÐÀå Â÷±¹Çå)Àº ÄÄÇ»ÅÍ°øÇкΠÀüº´°ï ±³¼öÆÀÀÌ µ¥ÀÌÅÍ Áõ°­ °úÁ¤À» ÃÖÀûÈ­ÇØ ¸Ó½Å·¯´× ÇнÀ ¼öÇà ½Ã ±âÁ¸ ½Ã½ºÅÛ ´ëºñ ÃÖ´ë 2¹è ºü¸¥ ¼Óµµ·Î ¼öÇàÇÏ´Â ¸®¹ìÆÛ ½Ã½ºÅÛÀ» °³¹ßÇß´Ù°í 13ÀÏ ¹àÇû´Ù.

ÇØ´ç ½Ã½ºÅÛÀ» ÅëÇØ ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ º¸´Ù È¿À²ÀûÀÎ ÀΰøÁö´É ÇнÀ ¼öÇàÀÌ °¡´ÉÇÒ °ÍÀ¸·Î ±â´ëÇÑ´Ù.

µ¥ÀÌÅÍ Áõ°­Àº ÇнÀ µ¥ÀÌÅÍ¿¡ ÀÓÀÇÀÇ º¯È¯ ¿¬»êÀ» Àû¿ëÇÔÀ¸·Î½á ½ÇÁúÀûÀÎ ÇнÀ µ¥ÀÌÅÍÀÇ ¼ö¸¦ Áõ°¡½ÃÅ°´Â °ÍÀ» ¸»ÇÑ´Ù. µ¥ÀÌÅÍ Áõ°­Àº ÀΰøÁö´É ÇнÀ ¸ðµ¨ÀÇ Á¤È®µµ¸¦ ³ôÀÌÁö¸¸ ÇнÀÀÇ ¼Óµµ¸¦ ÀúÇϽÃŲ´Ù´Â ¹®Á¦°¡ ÀÖ´Ù.

ÇнÀ ¼Óµµ ÀúÇÏ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ Àüº´°ï ±³¼ö ¿¬±¸ÁøÀº »õ·Î¿î µ¥ÀÌÅÍ Ä³½Ì ½Ã½ºÅÛÀÎ ¸®¹ìÆÛ¸¦ °³¹ßÇß´Ù. ±¸±Û¿¡¼­ Á¦¾ÈÇÑ ±âÁ¸ ¹æ½ÄÀº ÃÖÁ¾ Áõ°­ÇÑ Ç¥º»À» ÀÏÁ¤ Ƚ¼ö Àç»ç¿ëÇØ ÇнÀ ¼Óµµ¸¦ Çâ»ó½ÃÄ×Áö¸¸ ¸ðµ¨ÀÇ Á¤È®µµ´Â ÀúÇϵƴÙ.

ÀÌ¿Í ´Þ¸® Àüº´°ï ±³¼ö ¿¬±¸ÁøÀº ÇнÀµÈ ¸ðµ¨ÀÇ Á¤È®µµ ÀúÇÏ ¾øÀÌ Ç¥º»À» Àç»ç¿ëÇÏ´Â µ¥ÀÌÅÍ ¸®ÆÛºñ½Ì ±â¹ýÀ» Á¦¾ÈÇß´Ù. µ¥ÀÌÅÍ ¸®ÆÛºñ½ÌÀº µ¥ÀÌÅÍ Áõ°­ °úÁ¤À» µÎ ºÎºÐÀ¸·Î ³ª´² ºÎºÐÀûÀÎ µ¥ÀÌÅÍ Áõ°­ ¿¬»êÀÌ Àû¿ëµÈ Ç¥º»µéÀ» ÀÏÁ¤ Ƚ¼ö Àç»ç¿ëÇÏ°í, ÇнÀ¿¡ »ç¿ëÇϱâ Àü¿¡ ³ª¸ÓÁö Áõ°­ ¿¬»êÀ» ¼öÇàÇÏ´Â ¹æ½ÄÀ¸·Î ¸ðµ¨ Á¤È®µµ ÀúÇÏ ¹®Á¦¸¦ ÇØ°áÇß´Ù.

¿¬±¸ÁøÀº ¸®¹öºñ½Ì ¹æ½ÄÀ» È¿À²ÀûÀ¸·Î Áö¿øÇϱâ À§ÇØ Àç»ç¿ëÇϴ ǥº»µéÀ» ¿©·¯ ÇнÀ ½ºÅÜ¿¡¼­ °í¸£°Ô »ç¿ëÇÏ´Â »õ·Î¿î ij½Ì ½Ã½ºÅÛÀÎ ¸®¹ìÆÛ¸¦ ±¸ÇöÇß´Ù. ¸®¹ìÆÛ´Â ÆÄÀÌÅäÄ¡(PyTorch) µ¥ÀÌÅÍ ·Î´õ ´ëºñ ÃÖ´ë 2¹è ºü¸¥ ÀΰøÁö´É ÇнÀ ¼Óµµ¸¦ Á¦°øÇÑ´Ù. ¸®¹ìÆÛ´Â °³¹ß ½Ã »ç¿ëÀÚÀÇ ÆíÀǼºÀ» °í·ÁÇØ ¼³°èÇßÀ¸¸ç ±âÁ¸¿¡ »ç¿ëÇÏ´ø ÆÄÀÌÅäÄ¡ ¸ðµ¨À» ¸®¹ìÆÛ¸¦ ÀÌ¿ëÇØ ºü¸£°Ô ¼öÇàÇÒ ¼ö ÀÖ´Ù. ¿¬±¸ÁøÀº ¸®¹ìÆÛ¸¦ ÆÄÀÌÅäÄ¡ »ç¿ëÀÚµéÀÌ È°¿ëÇÒ ¼ö ÀÖµµ·Ï °ø°³ÇÒ °èȹÀÌ´Ù.

ÀÌ ¿¬±¸ °á°ú´Â 7¿ù ÄÄÇ»ÅÍ ½Ã½ºÅÛ ºÐ¾ß¿¡¼­ ±ÇÀ§ ÀÖ´Â ÇÐȸ USENIX ATC¿¡¼­ ¹ßÇ¥µÉ ¿¹Á¤ÀÌ´Ù.

Àüº´°ï ±³¼ö´Â À̹ø °³¹ß¿¡ ´ëÇØ “¼¼°è¸¦ ¼±µµÇÏ´Â ÀΰøÁö´É Ç÷§Æû ±â¼úÀ» ¿¬¼ÓÇؼ­ ¹ßÇ¥ÇÏ°Ô µÅ ±â»Ú´Ù. ¾ÕÀ¸·Î ÇÁ·»µé¸®¿¡À̾ÆÀÌ(friendli.ai)¸¦ ÅëÇØ ÃÊ´ëÇü ÀΰøÁö´ÉÀ» ¸¸µé¾î ¼­ºñ½º·Î Á¦°øÇÏ°Ú´Ù”°í ¼Ò°¨À» ¹àÇû´Ù.

¡Þ³í¹® Á¦¸ñ

“Refurbish Your Training Data: Reusing Partially Augmented Samples for Faster Deep Neural Network Training”, Gyewon Lee, Irene Lee (Georgia Institute of Technology), Hyeonmin Ha, Kyunggeun Lee, Hwarim Hyun, Ahnjae Shin, and Byung-Gon Chun.

Ãâó : ¼­¿ï´ëÇб³ °ø°ú´ëÇÐ



 Àüü´º½º¸ñ·ÏÀ¸·Î

±â´É¼º È­ÀåÇ°¿ë ¼¶À¯¼ÒÀç °³¹ß ±â¼úÁ¦ÈÞ Ã¼°á
LG»ýÈ°°Ç°­ ´õÈÄ¡¤CNP, ñé ºäƼÇà»ç ¡®°úÇбâ¼ú»ó¡¯ ¼ö»ó
ÀÔ¼¿, °ñ°üÀý¿° Ä¡·áÁ¦ ¡®¹ÂÄÜ¡¯À¸·Î ÀϺ» ½ÃÀå ÁøÃâ °¡¼Ó
¾Ö°æÄɹÌÄ®, SIB¿ë À½±Ø¼ÒÀç ¡®°í¼º´É ÇϵåÄ«º»¡¯ °³¹ß ¼º°ø
±â»óû ¡®2024 ³¯¾¾ ºòµ¥ÀÌÅÍ ÄÜÅ×½ºÆ®¡¯ °³ÃÖ
NCHÄÚ¸®¾Æ, »ê¾÷ À±È°°ü¸® ÇÁ·Î±×·¥ ·ÐĪ
´ë¿õÁ¦¾à Æå¼öŬ·ç, Áß±¹¼­ ¡®Ç︮ÄÚ¹ÚÅÍ Á¦±Õ Ä¡·á¡¯ ÀÓ»ó ½Åû

 

½Ç³» ÃøÀ§ Àü¹® ±â¾÷ ÆÄÆľß, ½Ç³» ³»ºñ°ÔÀÌ¼Ç ¼­ºñ½º
À¯±â ¾ç±ØÀç ´ÜÁ¡ º¸¿ÏÇØ ¹èÅ͸® ¼º´É Çõ½ÅÀûÀ¸·Î Çâ»ó
¡®KADEX 2024¡¯ ´ëÇѹα¹ ´ëÇ¥ Áö»ó¹«±â Àü½Ãȸ·Î ¿ì¶Ò
HDÇö´ë, Àü±âÃßÁø¼± ±¹Á¦Ç¥ÁØ ¸¸µç´Ù
OATC ÇǺÎÀÓ»ó½ÃÇè¼¾ÅÍ, °æ¼º´ë È­ÀåÇ°Çаú¿Í MOU
ÄھƽºÅÛÄÍ¿Â, ¹üºÎó Àç»ýÀÇ·á ±â¼ú °³¹ß ¿¬±¸ ±â¾÷ ¼±¹ß
HDÇö´ëÁß°ø¾÷, À¯·´ ÇØ»ódz·Â ½ÃÀå ÁøÃâ

 


°øÁö»çÇ×
´º½ºÁö ÇÑÀÚÇ¥±â 'ãæÚ¤ó¢'
´º½º±×·ì Á¤º¸ ¹Ìµð¾î ºÎ¹® »óÇ¥µî·Ï
¾ËÇÁ·Ò °è¿­ »óÇ¥, »óÇ¥µî·Ï ¿Ï·á
¾Ë¶ã°Ç¼³, »óÇ¥µî·Ï ¿Ï·á
Á¸Â÷´åÄÄ, ±Û²Ã º¯°æ »óÇ¥µî·Ï ¿Ï·á

 

ȸ»ç¼Ò°³ | ÀÎÀçä¿ë | ÀÌ¿ë¾à°ü | °³ÀÎÁ¤º¸Ãë±Þ¹æħ | û¼Ò³âº¸È£Á¤Ã¥ | Ã¥ÀÓÇÑ°è¿Í ¹ýÀû°íÁö | À̸ÞÀÏÁÖ¼Ò¹«´Ü¼öÁý°ÅºÎ | °í°´¼¾ÅÍ

±â»çÁ¦º¸ À̸ÞÀÏ news@newsji.com, ÀüÈ­ 050 2222 0002, Æѽº 050 2222 0111, ÁÖ¼Ò : ¼­¿ï ±¸·Î±¸ °¡¸¶»ê·Î 27±æ 60 1-37È£

ÀÎÅͳݴº½º¼­ºñ½º»ç¾÷µî·Ï : ¼­¿ï ÀÚ00447, µî·ÏÀÏÀÚ : 2013.12.23., ´º½º¹è¿­ ¹× û¼Ò³âº¸È£ÀÇ Ã¥ÀÓ : ´ëÇ¥ CEO

Copyright ¨Ï All rights reserved..